
ISO 19581:2017
ISO 19581:2017 Measurement of radioactivity – Gamma emitting radionuclides – Rapid screening method using scintillation detector gamma-ray spectrometry
CDN $173.00
Description
ISO 19581 specifies a screening test method to quantify rapidly the activity concentration of gamma-emitting radionuclides, such as 131I, 132Te, 134Cs and 137Cs, in solid or liquid test samples using gamma-ray spectrometry with lower resolution scintillation detectors as compared with the HPGe detectors (see IEC 61563).
This test method can be used for the measurement of any potentially contaminated environmental matrices (including soil), food and feed samples as well as industrial materials or products that have been properly conditioned. Sample preparation techniques used in the screening method are not specified in ISO 19581, since special sample preparation techniques other than simple machining (cutting, grinding, etc.) should not be required. Although the sampling procedure is of utmost importance in the case of the measurement of radioactivity in samples, it is out of scope of ISO 19581; other international standards for sampling procedures that can be used in combination with ISO 19581 are available (see References [1],[2],[3],[4],[5],[6]).
The test method applies to the measurement of gamma-emitting radionuclides such as 131I, 134Cs and 137Cs. Using sample sizes of 0,5 l to 1,0 l in a Marinelli beaker and a counting time of 5 min to 20 min, decision threshold of 10 Bq·kg‚à Ã1 can be achievable using a commercially available scintillation spectrometer [e.g. thallium activated sodium iodine (NaI(Tl)) spectrometer 2″ ϕ √ó 2″ detector size, 7 % resolution (FWHM) at 662 keV, 30 mm lead shield thickness].
This test method also can be performed in a “makeshift” laboratory or even outside a testing laboratory on samples directly measured in the field where they were collected.
During a nuclear or radiological emergency, this test method enables a rapid measurement of the sample activity concentration of potentially contaminated samples to check against operational intervention levels (OILs) set up by decision makers that would trigger a predetermined emergency response to reduce existing radiation risks[12].
Due to the uncertainty associated with the results obtained with this test method, test samples requiring more accurate test results can be measured using high-purity germanium (HPGe) detectors gamma-ray spectrometry in a testing laboratory, following appropriate preparation of the test samples[7][8].
ISO 19581 does not contain criteria to establish the activity concentration of OILs.
Edition
1
Published Date
2017-10-09
Status
PUBLISHED
Pages
18
Format 
Secure PDF
Secure – PDF details
- Save your file locally or view it via a web viewer
- Viewing permissions are restricted exclusively to the purchaser
- Device limits - 3
- Printing – Enabled only to print (1) copy
See more about our Environmental Commitment
Abstract
ISO 19581 specifies a screening test method to quantify rapidly the activity concentration of gamma-emitting radionuclides, such as 131I, 132Te, 134Cs and 137Cs, in solid or liquid test samples using gamma-ray spectrometry with lower resolution scintillation detectors as compared with the HPGe detectors (see IEC 61563).
This test method can be used for the measurement of any potentially contaminated environmental matrices (including soil), food and feed samples as well as industrial materials or products that have been properly conditioned. Sample preparation techniques used in the screening method are not specified in ISO 19581, since special sample preparation techniques other than simple machining (cutting, grinding, etc.) should not be required. Although the sampling procedure is of utmost importance in the case of the measurement of radioactivity in samples, it is out of scope of ISO 19581; other international standards for sampling procedures that can be used in combination with ISO 19581 are available (see References [1],[2],[3],[4],[5],[6]).
The test method applies to the measurement of gamma-emitting radionuclides such as 131I, 134Cs and 137Cs. Using sample sizes of 0,5 l to 1,0 l in a Marinelli beaker and a counting time of 5 min to 20 min, decision threshold of 10 Bq·kg‚à Ã1 can be achievable using a commercially available scintillation spectrometer [e.g. thallium activated sodium iodine (NaI(Tl)) spectrometer 2" ϕ √ó 2" detector size, 7 % resolution (FWHM) at 662 keV, 30 mm lead shield thickness].
This test method also can be performed in a "makeshift" laboratory or even outside a testing laboratory on samples directly measured in the field where they were collected.
During a nuclear or radiological emergency, this test method enables a rapid measurement of the sample activity concentration of potentially contaminated samples to check against operational intervention levels (OILs) set up by decision makers that would trigger a predetermined emergency response to reduce existing radiation risks[12].
Due to the uncertainty associated with the results obtained with this test method, test samples requiring more accurate test results can be measured using high-purity germanium (HPGe) detectors gamma-ray spectrometry in a testing laboratory, following appropriate preparation of the test samples[7][8].
ISO 19581 does not contain criteria to establish the activity concentration of OILs.
Previous Editions
Can’t find what you are looking for?
Please contact us at:
Related Documents
-

ISO 11665:2019 Measurement of radioactivity in the environment – Air: radon-222 – Part 1: Origins of radon and its short-lived decay products and associated measurement methods
CDN $273.00 Add to cart -

ISO 11665:2020 Measurement of radioactivity in the environment – Air: radon-222 – Part 3: Spot measurement method of the potential alpha energy concentration of its short-lived decay products
CDN $233.00 Add to cart -

ISO 11665:2019 Measurement of radioactivity in the environment – Air: radon-222 – Part 2: Integrated measurement method for determining average potential alpha energy concentration of its short-lived decay products
CDN $173.00 Add to cart -

ISO 21439:2009 Clinical dosimetry – Beta radiation sources for brachytherapy
CDN $390.00 Add to cart







