Search
×
FR

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-6 Chapter 6 – Density

$

204

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 560: Fired Heaters for General Refinery Services

$

721

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 64: Diverter Equipment Systems

$

324

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 17.10.1: Refrigerated Light Hydrocarbon Fluids – Measurement of Cargoes on Board LNG Carries

$

417

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-1: Testing Water-based Drilling Fluids

$

418

BUY NOW

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-12 Chapter 12 – Thermal Conductivity

$

214

BUY NOW

Placeholder headline

This is just a placeholder headline

API 16FI Frac Iron Guidelines and Requirements

$

129

BUY NOW

ISO 230:2022

ISO 230:2022 Test code for machine tools – Part 12: Accuracy of finished test pieces

CDN $312.00

Description

This document specifies methods for defining machining tests for manufacturing accurate test pieces, and for evaluating the influence of quasi-static geometric errors of linear axes and rotary axes, and the influence of the synchronization error of simultaneously controlled multiple axes. Although quasi-static geometric errors are often major contributors for geometric errors of finished test pieces, other factors, e.g. the dynamic contouring error, can also have significant influence.

This document describes examples of test piece geometry applicable to individual machine tools, possible contributors to machining error, deviations to be measured and measuring instruments. By clarifying possible contributors to machining error in each machining test, this document gives a guidance to machine tool manufacturers or users such that proper machining tests can be chosen to evaluate a machine tool’s machining performance in specified machining applications.

Machining tests to evaluate the geometric accuracy of a single surface are described in Clause 5, and those to evaluate geometric relationship of multiple machining features are described in Clause 6. Clause 7 presents machining tests for other objectives: machining tests for evaluation of short-term capability (7.2), and machining tests for evaluation of thermal influence (7.3).

Edition

1

Published Date

2022-06-24

Status

PUBLISHED

Pages

46

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

This document specifies methods for defining machining tests for manufacturing accurate test pieces, and for evaluating the influence of quasi-static geometric errors of linear axes and rotary axes, and the influence of the synchronization error of simultaneously controlled multiple axes. Although quasi-static geometric errors are often major contributors for geometric errors of finished test pieces, other factors, e.g. the dynamic contouring error, can also have significant influence.

This document describes examples of test piece geometry applicable to individual machine tools, possible contributors to machining error, deviations to be measured and measuring instruments. By clarifying possible contributors to machining error in each machining test, this document gives a guidance to machine tool manufacturers or users such that proper machining tests can be chosen to evaluate a machine tool’s machining performance in specified machining applications.

Machining tests to evaluate the geometric accuracy of a single surface are described in Clause 5, and those to evaluate geometric relationship of multiple machining features are described in Clause 6. Clause 7 presents machining tests for other objectives: machining tests for evaluation of short-term capability (7.2), and machining tests for evaluation of thermal influence (7.3).

Previous Editions

Can’t find what you are looking for?

Please contact us at: