Search
×
FR

Placeholder headline

This is just a placeholder headline

MSS SP-44-2026: Steel Pipeline Flanges

$

450

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 576: Inspection of Pressure-relieving Devices

$

460

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 591: Process Valve Qualification Procedure

$

226

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 576: Inspection of Pressure-relieving Devices: Addendum 1

$

0

BUY NOW

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-6 Chapter 6 – Density

$

204

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 560: Fired Heaters for General Refinery Services

$

721

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 64: Diverter Equipment Systems

$

324

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 17.10.1: Refrigerated Light Hydrocarbon Fluids – Measurement of Cargoes on Board LNG Carries

$

417

BUY NOW

ISO 15850:2014

ISO 15850:2014 Plastics – Determination of tension-tension fatigue crack propagation – Linear elastic fracture mechanics (LEFM) approach

CDN $233.00

SKU: fd65a1c76770 Category:

Description

ISO 15850:2014 specifies a method for measuring the propagation of a crack in a notched specimen subjected to a cyclic tensile load varying between a constant positive minimum and a constant positive maximum value. The test results include the crack length as a function of the number of load cycles and the crack length increase rate as a function of the stress intensity factor and energy release rate at the crack tip. The possible occurrence of discontinuities in crack propagation is detected and reported.

The test can be also used for the purpose of determining the resistance to crack propagation failure. In this case, the results can be presented in the form of number of cycles to failure or total time taken to cause crack propagation failure versus the stress intensity factor.

Edition

2

Published Date

2014-02-04

Status

PUBLISHED

Pages

23

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

ISO 15850:2014 specifies a method for measuring the propagation of a crack in a notched specimen subjected to a cyclic tensile load varying between a constant positive minimum and a constant positive maximum value. The test results include the crack length as a function of the number of load cycles and the crack length increase rate as a function of the stress intensity factor and energy release rate at the crack tip. The possible occurrence of discontinuities in crack propagation is detected and reported.

The test can be also used for the purpose of determining the resistance to crack propagation failure. In this case, the results can be presented in the form of number of cycles to failure or total time taken to cause crack propagation failure versus the stress intensity factor.

Previous Editions

Can’t find what you are looking for?

Please contact us at: