Search
×
FR

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-6 Chapter 6 – Density

$

204

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 560: Fired Heaters for General Refinery Services

$

721

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 64: Diverter Equipment Systems

$

324

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 17.10.1: Refrigerated Light Hydrocarbon Fluids – Measurement of Cargoes on Board LNG Carries

$

417

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-1: Testing Water-based Drilling Fluids

$

418

BUY NOW

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-12 Chapter 12 – Thermal Conductivity

$

214

BUY NOW

Placeholder headline

This is just a placeholder headline

API 16FI Frac Iron Guidelines and Requirements

$

129

BUY NOW

ISO 12131:2020

ISO 12131:2020 Plain bearings – Hydrodynamic plain thrust pad bearings under steady-state conditions – Part 1: Calculation of thrust pad bearings

CDN $233.00

Description

The aim of this document is to achieve designs of plain bearings that are reliable in operation, by the application of a calculation method for oil-lubricated hydrodynamic plain bearings with complete separation of the thrust collar and plain bearing surfaces by a film of lubricant[1].

This document applies to plain thrust bearings with incorporated wedge and supporting surfaces having any ratio of wedge surface length lwed to length of one pad L. It deals with the value lwed/L = 0,75 as this value represents the optimum ratio[2]. The ratio of width to length of one pad can be varied in the range B/L = 0,5 to 2.

The calculation method described in this document can be used for other incorporated gap shapes, e.g. plain thrust bearings with integrated baffle, when for these types the numerical solutions of Reynolds equation are known.

The calculation method serves for designing and optimizing plain thrust bearings e.g. for fans, gear units, pumps, turbines, electrical machines, compressors and machine tools. It is limited to steady-state conditions, i.e. load and angular speed of all rotating parts are constant under continuous operating conditions. Dynamic operating conditions are not included.

Edition

2

Published Date

2020-07-13

Status

PUBLISHED

Pages

25

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

The aim of this document is to achieve designs of plain bearings that are reliable in operation, by the application of a calculation method for oil-lubricated hydrodynamic plain bearings with complete separation of the thrust collar and plain bearing surfaces by a film of lubricant[1].

This document applies to plain thrust bearings with incorporated wedge and supporting surfaces having any ratio of wedge surface length lwed to length of one pad L. It deals with the value lwed/L = 0,75 as this value represents the optimum ratio[2]. The ratio of width to length of one pad can be varied in the range B/L = 0,5 to 2.

The calculation method described in this document can be used for other incorporated gap shapes, e.g. plain thrust bearings with integrated baffle, when for these types the numerical solutions of Reynolds equation are known.

The calculation method serves for designing and optimizing plain thrust bearings e.g. for fans, gear units, pumps, turbines, electrical machines, compressors and machine tools. It is limited to steady-state conditions, i.e. load and angular speed of all rotating parts are constant under continuous operating conditions. Dynamic operating conditions are not included.

Previous Editions

Can’t find what you are looking for?

Please contact us at: