Search
×
FR

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-6 Chapter 6 – Density

$

204

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 560: Fired Heaters for General Refinery Services

$

721

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 64: Diverter Equipment Systems

$

324

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 17.10.1: Refrigerated Light Hydrocarbon Fluids – Measurement of Cargoes on Board LNG Carries

$

417

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-1: Testing Water-based Drilling Fluids

$

418

BUY NOW

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-12 Chapter 12 – Thermal Conductivity

$

214

BUY NOW

Placeholder headline

This is just a placeholder headline

API 16FI Frac Iron Guidelines and Requirements

$

129

BUY NOW

ISO 15927:2009

ISO 15927:2009 Hygrothermal performance of buildings – Calculation and presentation of climatic data – Part 3: Calculation of a driving rain index for vertical surfaces from hourly wind and rain data

CDN $173.00

Description

ISO 15927-3:2009 specifies two procedures for providing an estimate of the quantity of water likely to impact on a wall of any given orientation. It takes account of topography, local sheltering and the type of building and wall.

The first method, based on coincident hourly rainfall and wind data, defines the method of calculation of the annual average index, which influences the moisture content of an absorbent surface, such as masonry, and the spell index, which influences the likelihood of rain penetration through masonry and joints in other walling systems.

The second method, based on average wind data and a qualitative recording of the presence and intensity of rain (the present weather code for rain), defines a method for calculating the spell length during which an absorbent material such as masonry is moistened, having a 10 % probability of being exceeded in any year (commonly referred to as having a mean return period of 10 years).

ISO 15927-3:2009 provides a comparison between the two methods.

ISO 15927-3:2009 gives procedures to correct the results of both methods for topography, local sheltering and the type of building and wall.

The methods included in ISO 15927-3:2009 do not apply in mountainous areas with sheer cliffs or deep gorges, in areas in which more than 25 % of the annual rainfall comes from severe convective storms, and in areas and during periods when a significant proportion of precipitation is made up of snow or hail.

Edition

1

Published Date

2009-03-10

Status

PUBLISHED

Pages

17

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

ISO 15927-3:2009 specifies two procedures for providing an estimate of the quantity of water likely to impact on a wall of any given orientation. It takes account of topography, local sheltering and the type of building and wall.

The first method, based on coincident hourly rainfall and wind data, defines the method of calculation of the annual average index, which influences the moisture content of an absorbent surface, such as masonry, and the spell index, which influences the likelihood of rain penetration through masonry and joints in other walling systems.

The second method, based on average wind data and a qualitative recording of the presence and intensity of rain (the present weather code for rain), defines a method for calculating the spell length during which an absorbent material such as masonry is moistened, having a 10 % probability of being exceeded in any year (commonly referred to as having a mean return period of 10 years).

ISO 15927-3:2009 provides a comparison between the two methods.

ISO 15927-3:2009 gives procedures to correct the results of both methods for topography, local sheltering and the type of building and wall.

The methods included in ISO 15927-3:2009 do not apply in mountainous areas with sheer cliffs or deep gorges, in areas in which more than 25 % of the annual rainfall comes from severe convective storms, and in areas and during periods when a significant proportion of precipitation is made up of snow or hail.

Previous Editions

Can’t find what you are looking for?

Please contact us at: