Search
×
FR

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-6 Chapter 6 – Density

$

204

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 560: Fired Heaters for General Refinery Services

$

721

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 64: Diverter Equipment Systems

$

324

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 17.10.1: Refrigerated Light Hydrocarbon Fluids – Measurement of Cargoes on Board LNG Carries

$

417

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-1: Testing Water-based Drilling Fluids

$

418

BUY NOW

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-12 Chapter 12 – Thermal Conductivity

$

214

BUY NOW

Placeholder headline

This is just a placeholder headline

API 16FI Frac Iron Guidelines and Requirements

$

129

BUY NOW

ISO 17294:2023

ISO 17294:2023 Water quality – Application of inductively coupled plasma mass spectrometry (ICP-MS) – Part 2: Determination of selected elements including uranium isotopes

CDN $273.00

SKU: 324587e498e4 Category:

Description

This document specifies a method for the determination of the elements aluminium, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, caesium, calcium, cerium, chromium, cobalt, copper, dysprosium, erbium, gadolinium, gallium, germanium, gold, hafnium, holmium, indium, iridium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, palladium, phosphorus, platinum, potassium, praseodymium, rubidium, rhenium, rhodium, ruthenium, samarium, scandium, selenium, silver, sodium, strontium, terbium, tellurium, thorium, thallium, thulium, tin, titanium, tungsten, uranium and its isotopes, vanadium, yttrium, ytterbium, zinc and zirconium in water (e.g. drinking water, surface water, ground water, waste water and eluates).

Taking into account the specific and additionally occurring interferences, these elements can be determined in water and digests of water and sludge (e.g. digests of water as described in ISO 155871 or ISO 155872).

The working range depends on the matrix and the interferences encountered. In drinking water and relatively unpolluted waters, the limit of quantification (LOQ) lies between 0,002 µg/l and 1,0 µg/l for most elements (see Table 1). The working range typically covers concentrations between several ng/l and mg/l depending on the element and specified requirements.

The quantification limits of most elements are affected by blank contamination and depend predominantly on the laboratory air-handling facilities available on the purity of reagents and the cleanliness of glassware.

The lower limit of quantification is higher in cases where the determination suffers from interferences (see Clause 5) or memory effects (see ISO 172941).

Elements other than those mentioned in the scope can also be determined according to this document provided that the user of the document is able to validate the method appropriately (e.g. interferences, sensitivity, repeatability, recovery).

Edition

3

Published Date

2023-10-18

Status

PUBLISHED

Pages

35

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

This document specifies a method for the determination of the elements aluminium, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, caesium, calcium, cerium, chromium, cobalt, copper, dysprosium, erbium, gadolinium, gallium, germanium, gold, hafnium, holmium, indium, iridium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, palladium, phosphorus, platinum, potassium, praseodymium, rubidium, rhenium, rhodium, ruthenium, samarium, scandium, selenium, silver, sodium, strontium, terbium, tellurium, thorium, thallium, thulium, tin, titanium, tungsten, uranium and its isotopes, vanadium, yttrium, ytterbium, zinc and zirconium in water (e.g. drinking water, surface water, ground water, waste water and eluates).

Taking into account the specific and additionally occurring interferences, these elements can be determined in water and digests of water and sludge (e.g. digests of water as described in ISO 15587-1 or ISO 15587-2).

The working range depends on the matrix and the interferences encountered. In drinking water and relatively unpolluted waters, the limit of quantification (LOQ) lies between 0,002 µg/l and 1,0 µg/l for most elements (see Table 1). The working range typically covers concentrations between several ng/l and mg/l depending on the element and specified requirements.

The quantification limits of most elements are affected by blank contamination and depend predominantly on the laboratory air-handling facilities available on the purity of reagents and the cleanliness of glassware.

The lower limit of quantification is higher in cases where the determination suffers from interferences (see Clause 5) or memory effects (see ISO 17294-1).

Elements other than those mentioned in the scope can also be determined according to this document provided that the user of the document is able to validate the method appropriately (e.g. interferences, sensitivity, repeatability, recovery).

Previous Editions

Can’t find what you are looking for?

Please contact us at: