REGISTER

FR
Search
×
FR

Placeholder headline

This is just a placeholder headline

API SPEC 14L: Lock Mandrels and Landing Nipples : Reaffirmed

$

273

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 20F: Corrosion Resistant Bolting for Use in the Petroleum and Natural Gas Industries : Reaffirmed

$

169

BUY NOW

Placeholder headline

This is just a placeholder headline

API TR 5NCL Nickel Content Limits for API 5CT Sour Service Products

$

149

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 19ICD: Inflow Control Devices : Reaffirmed

$

189

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 23.2: Reconciliation of Liquid Tank Car(s) Quantities : Reaffirmed

$

218

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 16A: Specification for Drill-through Equipment

$

322

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-2: Field Testing Oil-based Drilling Fluids wA1

$

388

BUY NOW

ISO 19021:2018

ISO 19021:2018 Test method for determination of gas concentrations in ISO 5659-2 using Fourier transform infrared spectroscopy

CDN $233.00

SKU: e7747b0a6a13 Categories: ,

Description

This document specifies a test method suitable to analyse effluents produced during pyrolysis and combustion of samples and products tested according to ISO 5659-2. The specified test method is based on Fourier-transform infrared (FTIR) spectroscopy described in ISO 19702, with additional information on the test apparatus and analyser calibration suitable for its application to this physical fire model. This document is intended to be used in conjunction with ISO 5659-2 and ISO 19702.

The test method provides time-resolved gas concentrations during the whole of an ISO 5659-2 test.

This document does not address the accuracy of this fire model for any product application, nor does it address the accuracy of the gas concentrations relative to any real-scale fire tests or fire scenarios. For future conversion of this document into an International Standard, an interlaboratory trial is intended to be conducted to replace Annex B.

This document does not include any toxicity assessment or provide input data for fire safety engineering.

As combustion conditions vary depending on the oxygen consumption rate in the enclosure during the ISO 5659-2 test, this physical fire model is not recognised as being representative of any specific fire scenario. Therefore, it is difficult to compare test results with real-scale fire conditions. As a consequence, if this test method is used for comparison among materials or products, it is intended to be done in combination with other fire tests.

Edition

1

Published Date

2018-05-11

Status

PUBLISHED

Pages

23

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

This document specifies a test method suitable to analyse effluents produced during pyrolysis and combustion of samples and products tested according to ISO 5659-2. The specified test method is based on Fourier-transform infrared (FTIR) spectroscopy described in ISO 19702, with additional information on the test apparatus and analyser calibration suitable for its application to this physical fire model. This document is intended to be used in conjunction with ISO 5659-2 and ISO 19702.

The test method provides time-resolved gas concentrations during the whole of an ISO 5659-2 test.

This document does not address the accuracy of this fire model for any product application, nor does it address the accuracy of the gas concentrations relative to any real-scale fire tests or fire scenarios. For future conversion of this document into an International Standard, an interlaboratory trial is intended to be conducted to replace Annex B.

This document does not include any toxicity assessment or provide input data for fire safety engineering.

As combustion conditions vary depending on the oxygen consumption rate in the enclosure during the ISO 5659-2 test, this physical fire model is not recognised as being representative of any specific fire scenario. Therefore, it is difficult to compare test results with real-scale fire conditions. As a consequence, if this test method is used for comparison among materials or products, it is intended to be done in combination with other fire tests.

Previous Editions

Can’t find what you are looking for?

Please contact us at: