Search
×
FR

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-6 Chapter 6 – Density

$

204

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 560: Fired Heaters for General Refinery Services

$

721

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 64: Diverter Equipment Systems

$

324

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 17.10.1: Refrigerated Light Hydrocarbon Fluids – Measurement of Cargoes on Board LNG Carries

$

417

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-1: Testing Water-based Drilling Fluids

$

418

BUY NOW

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-12 Chapter 12 – Thermal Conductivity

$

214

BUY NOW

Placeholder headline

This is just a placeholder headline

API 16FI Frac Iron Guidelines and Requirements

$

129

BUY NOW

ISO 20088:2018

ISO 20088:2018 Determination of the resistance to cryogenic spillage of insulation materials – Part 3: Jet release

CDN $233.00

SKU: 60e89585d2c4 Category:

Description

This document describes a method for determining the resistance of a cryogenic spill protection (CSP) system to a cryogenic jet as a result of a pressurized release which does not result in immersion conditions. It is applicable where CSP systems are installed on carbon steel and will be in contact with cryogenic fluids.

A cryogenic jet can be formed upon release from process equipment operating at pressure (e.g. some liquefaction processes utilize 40 to 60 bar operating pressure). Due to high pressure discharge, the cryogenic spillage protection can be compromised by the large momentum combined with extreme cryogenic temperature.

Although the test uses liquid nitrogen as the cryogenic liquid, the test described in this document is representative of a release of LNG, through a 20 mm orifice or less, at a release pressure of 6 barg or less, based upon simulated parameters 1 m from the release point. Confidence in this test being representative is based upon a comparison of the expected dynamic pressure of the simulated release in comparison with dynamic pressure from releases in accordance with this document.

It is not practical in this test to cover the whole range of cryogenic process conditions found in real plant conditions; in particular the test does not cover high pressure cryogenic jet releases that might be found in refrigeration circuits and in LNG streams immediately post-liquefaction.

Liquid nitrogen is used as the cryogenic medium due to the ability to safely handle the material at the pressures described in this document. The test condition is run at nominally 8 barg pressure.

ISO 20088-1 covers cryogenic release scenarios which can lead to pooling conditions for steel work protected by cryogenic spill protection as a result of a jet release or low pressure release of LNG or liquid nitrogen. ISO 20088-2 covers vapour phase exposure conditions as a result of a jet release or low pressure release of LNG or liquid nitrogen.

Edition

1

Published Date

2018-11-22

Status

PUBLISHED

Pages

23

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

This document describes a method for determining the resistance of a cryogenic spill protection (CSP) system to a cryogenic jet as a result of a pressurized release which does not result in immersion conditions. It is applicable where CSP systems are installed on carbon steel and will be in contact with cryogenic fluids.

A cryogenic jet can be formed upon release from process equipment operating at pressure (e.g. some liquefaction processes utilize 40 to 60 bar operating pressure). Due to high pressure discharge, the cryogenic spillage protection can be compromised by the large momentum combined with extreme cryogenic temperature.

Although the test uses liquid nitrogen as the cryogenic liquid, the test described in this document is representative of a release of LNG, through a 20 mm orifice or less, at a release pressure of 6 barg or less, based upon simulated parameters 1 m from the release point. Confidence in this test being representative is based upon a comparison of the expected dynamic pressure of the simulated release in comparison with dynamic pressure from releases in accordance with this document.

It is not practical in this test to cover the whole range of cryogenic process conditions found in real plant conditions; in particular the test does not cover high pressure cryogenic jet releases that might be found in refrigeration circuits and in LNG streams immediately post-liquefaction.

Liquid nitrogen is used as the cryogenic medium due to the ability to safely handle the material at the pressures described in this document. The test condition is run at nominally 8 barg pressure.

ISO 20088-1 covers cryogenic release scenarios which can lead to pooling conditions for steel work protected by cryogenic spill protection as a result of a jet release or low pressure release of LNG or liquid nitrogen. ISO 20088-2 covers vapour phase exposure conditions as a result of a jet release or low pressure release of LNG or liquid nitrogen.

Previous Editions

Can’t find what you are looking for?

Please contact us at: