
ISO 20177:2018
ISO 20177:2018 Vacuum technology – Vacuum gauges – Procedures to measure and report outgassing rates
CDN $312.00
Description
This document describes procedures to measure outgassing rates from components designed for vacuum chambers and of vacuum chambers as a whole. The outgassing rates are expected to be lower than 10−5 Pa m3 s−1 (10−2 Pa L s−1) at 23 °C and to emerge from devices that are suitable for high or ultra-high vacuum applications. The molecular mass of the outgassing species or vapour is below 300 u.
The upper limit 10‚àí5 Pa m3 s‚àí1 of total outgassing rate is specified independent of the size, the total surface area and texture or state of the outgassing material. If a specific outgassing rate (outgassing rate per area) is determined, the area is not a specific surface area including the surface roughness, but the nominal geometrical one. When it is difficult to determine the nominal geometrical surface area of the sample, such as powders, porous materials, very rough surfaces, or complex devices, mass specific outgassing rate (e.g. outgassing rate per gram) is used.
For many practical applications, it is sufficient to determine the total outgassing rate. If a measuring instrument, which sensitivity is gas species dependent, is used, the total outgassing rate are given in nitrogen equivalent. In cases, however, where the total outgassing rate is too high, the disturbing gas species is identified, and its outgassing rate is measured in order to improve the sample material. This document covers both cases.
Some outgassing molecules can adsorb on a surface with a residence time that is much longer than the total time of measurement. Such molecules cannot be detected by a detecting instrument when there is no direct line of sight. This is considered as a surface effect and surface analytical investigations are more useful than general outgassing rate measurements considered here. Also, molecules that are released from the surface by irradiation of UV light or X-rays, are out of the scope of this document.
This document is written to standardize the measurement of outgassing rates in such a way that values obtained at different laboratories and by different methods are comparable. To this end, for any of the described methods, traceability is provided to the System International (SI) for the most important parameters of each method and according to the metrological level.
Outgassing rate measurements by mass loss, which were mainly developed for testing of spacecraft and satellite materials, are not gas specific. For acceptable measurement times, mass loss measurements require significantly higher outgassing rates (>10‚àí5 Pa m3 s‚àí1) than typical for high and ultrahigh vacuum components. Also, it is not possible to measure the sample in situ due to the weight of the vacuum chamber, since the balances are not vacuum compatible. For these reasons, mass loss measurements are not considered in this document.
It is assumed that the user of this document is familiar with high and ultra-high vacuum technology and the corresponding measuring instrumentation such as ionization gauges and quadrupole mass spectrometers.
Edition
1
Published Date
2018-06-12
Status
PUBLISHED
Pages
39
Format 
Secure PDF
Secure – PDF details
- Save your file locally or view it via a web viewer
- Viewing permissions are restricted exclusively to the purchaser
- Device limits - 3
- Printing – Enabled only to print (1) copy
See more about our Environmental Commitment
Abstract
This document describes procedures to measure outgassing rates from components designed for vacuum chambers and of vacuum chambers as a whole. The outgassing rates are expected to be lower than 10−5 Pa m3 s−1 (10−2 Pa L s−1) at 23 °C and to emerge from devices that are suitable for high or ultra-high vacuum applications. The molecular mass of the outgassing species or vapour is below 300 u.
The upper limit 10‚àí5 Pa m3 s‚àí1 of total outgassing rate is specified independent of the size, the total surface area and texture or state of the outgassing material. If a specific outgassing rate (outgassing rate per area) is determined, the area is not a specific surface area including the surface roughness, but the nominal geometrical one. When it is difficult to determine the nominal geometrical surface area of the sample, such as powders, porous materials, very rough surfaces, or complex devices, mass specific outgassing rate (e.g. outgassing rate per gram) is used.
For many practical applications, it is sufficient to determine the total outgassing rate. If a measuring instrument, which sensitivity is gas species dependent, is used, the total outgassing rate are given in nitrogen equivalent. In cases, however, where the total outgassing rate is too high, the disturbing gas species is identified, and its outgassing rate is measured in order to improve the sample material. This document covers both cases.
Some outgassing molecules can adsorb on a surface with a residence time that is much longer than the total time of measurement. Such molecules cannot be detected by a detecting instrument when there is no direct line of sight. This is considered as a surface effect and surface analytical investigations are more useful than general outgassing rate measurements considered here. Also, molecules that are released from the surface by irradiation of UV light or X-rays, are out of the scope of this document.
This document is written to standardize the measurement of outgassing rates in such a way that values obtained at different laboratories and by different methods are comparable. To this end, for any of the described methods, traceability is provided to the System International (SI) for the most important parameters of each method and according to the metrological level.
Outgassing rate measurements by mass loss, which were mainly developed for testing of spacecraft and satellite materials, are not gas specific. For acceptable measurement times, mass loss measurements require significantly higher outgassing rates (>10‚àí5 Pa m3 s‚àí1) than typical for high and ultrahigh vacuum components. Also, it is not possible to measure the sample in situ due to the weight of the vacuum chamber, since the balances are not vacuum compatible. For these reasons, mass loss measurements are not considered in this document.
It is assumed that the user of this document is familiar with high and ultra-high vacuum technology and the corresponding measuring instrumentation such as ionization gauges and quadrupole mass spectrometers.
Previous Editions
Can’t find what you are looking for?
Please contact us at:
Related Documents
-

ISO 3529:2020 Vacuum technology – Vocabulary – Part 2: Vacuum pumps and related terms
CDN $76.00 Add to cart -

ISO 21358:2020 Vacuum technology – Right-angle valve – Dimensions and interfaces for pneumatic actuator
CDN $76.00 Add to cart -

ISO 3567:2011 Vacuum gauges – Calibration by direct comparison with a reference gauge
CDN $173.00 Add to cart -

ISO 21360:2020 Vacuum technology – Standard methods for measuring vacuum-pump performance – Part 2: Positive displacement vacuum pumps
CDN $173.00 Add to cart







