Search
×
FR

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-6 Chapter 6 – Density

$

204

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 560: Fired Heaters for General Refinery Services

$

721

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 64: Diverter Equipment Systems

$

324

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 17.10.1: Refrigerated Light Hydrocarbon Fluids – Measurement of Cargoes on Board LNG Carries

$

417

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-1: Testing Water-based Drilling Fluids

$

418

BUY NOW

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-12 Chapter 12 – Thermal Conductivity

$

214

BUY NOW

Placeholder headline

This is just a placeholder headline

API 16FI Frac Iron Guidelines and Requirements

$

129

BUY NOW

ISO 5165:2020

ISO 5165:2020 Petroleum products – Determination of the ignition quality of diesel fuels – Cetane engine method

CDN $233.00

Description

This document establishes the rating of diesel fuel oil in terms of an arbitrary scale of cetane numbers (CNs) using a standard single cylinder, four-stroke cycle, variable compression ratio, indirect injected diesel engine. The CN provides a measure of the ignition characteristics of diesel fuel oil in compression ignition engines. The CN is determined at constant speed in a pre-combustion chamber-type compression ignition test engine. However, the relationship of test engine performance to full scale, variable speed and variable load engines is not completely understood.

This document is applicable for the entire scale range from 0 CN to 100 CN but typical testing is in the range of 30 CN to 65 CN. An interlaboratory study executed by CEN in 2013 (10 samples in the range 52,4 CN to 73,8 CN)[3] confirmed that paraffinic diesel from synthesis or hydrotreatment, containing up to a volume fraction of 7 % fatty acid methyl ester (FAME), can be tested by this test method and that the precision is comparable to conventional fuels.

This test can be used for unconventional fuels such as synthetics or vegetable oils. However, the precision for those fuels has not been established and the relationship to the performance of such materials in full-scale engines is not completely understood.

Samples with fluid properties that interfere with the gravity flow of fuel to the fuel pump or delivery through the injector nozzle are not suitable for rating by this method.

NOTE This document specifies operating conditions in SI units but engine measurements are specified in inch-pound units or Fahrenheit because these are the historical units used in the manufacture of the equipment, and thus some references in this document include these and other non-SI units in parenthesis.

Edition

5

Published Date

2020-07-13

Status

PUBLISHED

Pages

20

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

This document establishes the rating of diesel fuel oil in terms of an arbitrary scale of cetane numbers (CNs) using a standard single cylinder, four-stroke cycle, variable compression ratio, indirect injected diesel engine. The CN provides a measure of the ignition characteristics of diesel fuel oil in compression ignition engines. The CN is determined at constant speed in a pre-combustion chamber-type compression ignition test engine. However, the relationship of test engine performance to full scale, variable speed and variable load engines is not completely understood.

This document is applicable for the entire scale range from 0 CN to 100 CN but typical testing is in the range of 30 CN to 65 CN. An interlaboratory study executed by CEN in 2013 (10 samples in the range 52,4 CN to 73,8 CN)[3] confirmed that paraffinic diesel from synthesis or hydrotreatment, containing up to a volume fraction of 7 % fatty acid methyl ester (FAME), can be tested by this test method and that the precision is comparable to conventional fuels.

This test can be used for unconventional fuels such as synthetics or vegetable oils. However, the precision for those fuels has not been established and the relationship to the performance of such materials in full-scale engines is not completely understood.

Samples with fluid properties that interfere with the gravity flow of fuel to the fuel pump or delivery through the injector nozzle are not suitable for rating by this method.

NOTE This document specifies operating conditions in SI units but engine measurements are specified in inch-pound units or Fahrenheit because these are the historical units used in the manufacture of the equipment, and thus some references in this document include these and other non-SI units in parenthesis.

Previous Editions

Can’t find what you are looking for?

Please contact us at: