Search
×
FR

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-6 Chapter 6 – Density

$

204

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 560: Fired Heaters for General Refinery Services

$

721

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 64: Diverter Equipment Systems

$

324

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 17.10.1: Refrigerated Light Hydrocarbon Fluids – Measurement of Cargoes on Board LNG Carries

$

417

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-1: Testing Water-based Drilling Fluids

$

418

BUY NOW

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-12 Chapter 12 – Thermal Conductivity

$

214

BUY NOW

Placeholder headline

This is just a placeholder headline

API 16FI Frac Iron Guidelines and Requirements

$

129

BUY NOW

ISO 643:2024

ISO 643:2024 Steels – Micrographic determination of the apparent grain size

CDN $312.00

Description

This document specifies micrographic methods of determining apparent ferritic or austenitic grain size in steels. It describes the methods of revealing grain boundaries and of estimating the mean grain size of specimens with unimodal size distribution. Although grains are three-dimensional in shape, the metallographic sectioning plane can cut through a grain at any point from a grain corner, to the maximum diameter of the grain, thus producing a range of apparent grain sizes on the two-dimensional plane, even in a sample with a perfectly consistent grain size.

Edition

5

Published Date

2024-08-22

Status

PUBLISHED

Pages

46

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

This document specifies micrographic methods of determining apparent ferritic or austenitic grain size in steels. It describes the methods of revealing grain boundaries and of estimating the mean grain size of specimens with unimodal size distribution. Although grains are three-dimensional in shape, the metallographic sectioning plane can cut through a grain at any point from a grain corner, to the maximum diameter of the grain, thus producing a range of apparent grain sizes on the two-dimensional plane, even in a sample with a perfectly consistent grain size.

Previous Editions

Can’t find what you are looking for?

Please contact us at: