Search
×
FR

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-6 Chapter 6 – Density

$

204

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 560: Fired Heaters for General Refinery Services

$

721

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 64: Diverter Equipment Systems

$

324

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 17.10.1: Refrigerated Light Hydrocarbon Fluids – Measurement of Cargoes on Board LNG Carries

$

417

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-1: Testing Water-based Drilling Fluids

$

418

BUY NOW

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-12 Chapter 12 – Thermal Conductivity

$

214

BUY NOW

Placeholder headline

This is just a placeholder headline

API 16FI Frac Iron Guidelines and Requirements

$

129

BUY NOW

ISO 9516:2003

ISO 9516:2003 Iron ores – Determination of various elements by X-ray fluorescence spectrometry – Part 1: Comprehensive procedure

CDN $351.00

SKU: 258f467fef0c Category:

Description

ISO 9516-1:2003 sets out a wavelength dispersive X-ray fluorescence procedure for the determination of iron, silicon, calcium, manganese, aluminium, titanium, magnesium, phosphorus, sulfur, potassium, tin, vanadium, chromium, cobalt, nickel, copper, zinc, arsenic, lead and barium in iron ores. The method has been designed to cope with iron ores having high ignition losses.

The method is applicable to iron ores regardless of mineralogical type.

Edition

1

Published Date

2003-04-03

Status

PUBLISHED

Pages

65

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

ISO 9516-1:2003 sets out a wavelength dispersive X-ray fluorescence procedure for the determination of iron, silicon, calcium, manganese, aluminium, titanium, magnesium, phosphorus, sulfur, potassium, tin, vanadium, chromium, cobalt, nickel, copper, zinc, arsenic, lead and barium in iron ores. The method has been designed to cope with iron ores having high ignition losses.

The method is applicable to iron ores regardless of mineralogical type.

Previous Editions

Can’t find what you are looking for?

Please contact us at: