Search
×
FR

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-6 Chapter 6 – Density

$

204

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 560: Fired Heaters for General Refinery Services

$

721

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 64: Diverter Equipment Systems

$

324

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 17.10.1: Refrigerated Light Hydrocarbon Fluids – Measurement of Cargoes on Board LNG Carries

$

417

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-1: Testing Water-based Drilling Fluids

$

418

BUY NOW

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-12 Chapter 12 – Thermal Conductivity

$

214

BUY NOW

Placeholder headline

This is just a placeholder headline

API 16FI Frac Iron Guidelines and Requirements

$

129

BUY NOW

ISO 6145:2004

ISO 6145:2004 Gas analysis – Preparation of calibration gas mixtures using dynamic volumetric methods – Part 4: Continuous syringe injection method

CDN $173.00

SKU: ede475665c16 Categories: ,

Description

ISO 6145-4:2004 specifies a method for continuous production of calibration gas mixtures, containing two or more components, from pure gases or other gas mixtures by continuous injection of the calibration component(s) into a complementary gas stream by means of a syringe.

If pre-mixed gases are used instead of pure gases (see Annex A), much lower volume fractions can be obtained. The volume flow rates, from which the volume fractions are determined, can be calculated from the individual flow rates and can be independently measured by a suitable method given in ISO 6145-1.

The merits of the method are that a substantial quantity of the gas mixture can be prepared on a continuous basis and that multi-component mixtures can be prepared almost as readily as binary mixtures if the appropriate number of syringes is utilized, or if the syringe already contains a multi-component mixture of known composition. This method also provides a convenient means for increasing the volume fraction of the calibration component in the mixture in small steps. It is therefore a useful method for evaluation of other characteristics of gas analysers, such as minimum detection limit and dead zone, as well as accuracy. The relative expanded uncertainty in the volume fraction obtainable for a binary mixture (at a coverage factor of 2) is 5 % and the range of applicability is 10-5 to 10-2.

Edition

2

Published Date

2004-06-15

Status

PUBLISHED

Pages

15

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

ISO 6145-4:2004 specifies a method for continuous production of calibration gas mixtures, containing two or more components, from pure gases or other gas mixtures by continuous injection of the calibration component(s) into a complementary gas stream by means of a syringe.

If pre-mixed gases are used instead of pure gases (see Annex A), much lower volume fractions can be obtained. The volume flow rates, from which the volume fractions are determined, can be calculated from the individual flow rates and can be independently measured by a suitable method given in ISO 6145-1.

The merits of the method are that a substantial quantity of the gas mixture can be prepared on a continuous basis and that multi-component mixtures can be prepared almost as readily as binary mixtures if the appropriate number of syringes is utilized, or if the syringe already contains a multi-component mixture of known composition. This method also provides a convenient means for increasing the volume fraction of the calibration component in the mixture in small steps. It is therefore a useful method for evaluation of other characteristics of gas analysers, such as minimum detection limit and dead zone, as well as accuracy. The relative expanded uncertainty in the volume fraction obtainable for a binary mixture (at a coverage factor of 2) is 5 % and the range of applicability is 10-5 to 10-2.

Previous Editions

Can’t find what you are looking for?

Please contact us at: