Your cart is currently empty!

ISO 11691:2020
ISO 11691:2020 Acoustics – Measurement of insertion loss of ducted silencers without flow – Laboratory survey method
CDN $115.00
Description
This document specifies a laboratory substitution method to determine the insertion loss without flow of ducted, mainly absorbent, circular and rectangular silencers, as well as other duct elements for use in ventilating and air-conditioning systems.
NOTE Laboratory measurement procedures for ducted silencers with superimposed flow are described in ISO 7235[5].
This document is applicable to silencers where the design velocity does not exceed 15 m/s. As the method does not include self-generated flow noise, this document is not suitable for tests on silencers where this type of noise is of great importance for the evaluation of the silencer performance. As most silencers, particularly in offices and dwelling, have design velocities below 15 m/s, this document can often be a cost-efficient alternative to ISO 7235[5].
The insertion loss determined according to this document in a laboratory is not necessarily the same as the insertion loss obtained in an installation in the field. Different sound and flow fields in the duct yield different results. In this document, the sound field is dominated by plane wave modes. Due to the use of regular test ducts, the results can include some flanking transmission via structural vibrations in the duct walls that sets an upper limit to the insertion loss that can be determined.
This document is intended to be used for circular silencers with diameters of 80 mm to 2 000 mm or for rectangular silencers with cross-sectional areas within the same range.
Edition
2
Published Date
2020-07-01
Status
PUBLISHED
Pages
8
Format 
Secure PDF
Secure – PDF details
- Save your file locally or view it via a web viewer
- Viewing permissions are restricted exclusively to the purchaser
- Device limits - 3
- Printing – Enabled only to print (1) copy
See more about our Environmental Commitment

Abstract
This document specifies a laboratory substitution method to determine the insertion loss without flow of ducted, mainly absorbent, circular and rectangular silencers, as well as other duct elements for use in ventilating and air-conditioning systems.
NOTE Laboratory measurement procedures for ducted silencers with superimposed flow are described in ISO 7235[5].
This document is applicable to silencers where the design velocity does not exceed 15 m/s. As the method does not include self-generated flow noise, this document is not suitable for tests on silencers where this type of noise is of great importance for the evaluation of the silencer performance. As most silencers, particularly in offices and dwelling, have design velocities below 15 m/s, this document can often be a cost-efficient alternative to ISO 7235[5].
The insertion loss determined according to this document in a laboratory is not necessarily the same as the insertion loss obtained in an installation in the field. Different sound and flow fields in the duct yield different results. In this document, the sound field is dominated by plane wave modes. Due to the use of regular test ducts, the results can include some flanking transmission via structural vibrations in the duct walls that sets an upper limit to the insertion loss that can be determined.
This document is intended to be used for circular silencers with diameters of 80 mm to 2 000 mm or for rectangular silencers with cross-sectional areas within the same range.
Previous Editions
Can’t find what you are looking for?
Please contact us at:
Related Documents
-
ISO 5053:2019 Industrial trucks – Vocabulary – Part 2: Fork arms and attachments
0 out of 5CDN $351.00 Add to cart -
ISO 10110:2019 Optics and photonics – Preparation of drawings for optical elements and systems – Part 1: General
0 out of 5CDN $312.00 Add to cart -
ISO 2574:1994 Aircraft – Electrical cables – Identification marking
0 out of 5CDN $115.00 Add to cart -
ISO 8927:1991 Earth-moving machinery – Machine availability – Vocabulary
0 out of 5CDN $233.00 Add to cart