Search
×
FR

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-6 Chapter 6 – Density

$

204

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 560: Fired Heaters for General Refinery Services

$

721

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 64: Diverter Equipment Systems

$

324

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 17.10.1: Refrigerated Light Hydrocarbon Fluids – Measurement of Cargoes on Board LNG Carries

$

417

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-1: Testing Water-based Drilling Fluids

$

418

BUY NOW

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-12 Chapter 12 – Thermal Conductivity

$

214

BUY NOW

Placeholder headline

This is just a placeholder headline

API 16FI Frac Iron Guidelines and Requirements

$

129

BUY NOW

ISO 16000:2014

ISO 16000:2014 Indoor air – Part 27: Determination of settled fibrous dust on surfaces by SEM (scanning electron microscopy) (direct method)

CDN $273.00

SKU: 8634cd5058db Category:

Description

ISO 16000-27:2014 specifies a method giving an index for the numerical concentration of fibrous structures with fibres equal or greater than 0,2 µm in diameter in settled dust on surfaces and their classification into specific substance groups (e.g. chrysotile, amphibole asbestos, other inorganic fibres). It is primarily applicable to indoor areas, but it is also suitable for certain outdoor situations. A sampling technique for collection of settled dust using adhesive tape is described. The method incorporates an analytical method for evaluation of the collected samples by scanning electron microscopy. The result can be specified in asbestos structures per unit area and/or classified into four different loading classes. The analytical sensitivity depends on the area examined and can be as low as 10 structures/cm2.

For the purpose of ISO 16000-27:2014, an asbestos or fibrous structure is defined as an asbestos or (other inorganic/organic) fibre-containing particle regardless of its diameter.

The use of the sampling method described is limited, depending on the structure and type of the surface (minor roughness and curvature) and the thickness of dust layer. If the dust layer is too thick, the dust layer can be sampled by other means and eventually analysed as powder sample.

It is assumed that the settled dust has particle diameters mostly below 1 mm.

Edition

1

Published Date

2014-05-20

Status

PUBLISHED

Pages

32

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

ISO 16000-27:2014 specifies a method giving an index for the numerical concentration of fibrous structures with fibres equal or greater than 0,2 µm in diameter in settled dust on surfaces and their classification into specific substance groups (e.g. chrysotile, amphibole asbestos, other inorganic fibres). It is primarily applicable to indoor areas, but it is also suitable for certain outdoor situations. A sampling technique for collection of settled dust using adhesive tape is described. The method incorporates an analytical method for evaluation of the collected samples by scanning electron microscopy. The result can be specified in asbestos structures per unit area and/or classified into four different loading classes. The analytical sensitivity depends on the area examined and can be as low as 10 structures/cm2.

For the purpose of ISO 16000-27:2014, an asbestos or fibrous structure is defined as an asbestos or (other inorganic/organic) fibre-containing particle regardless of its diameter.

The use of the sampling method described is limited, depending on the structure and type of the surface (minor roughness and curvature) and the thickness of dust layer. If the dust layer is too thick, the dust layer can be sampled by other means and eventually analysed as powder sample.

It is assumed that the settled dust has particle diameters mostly below 1 mm.

Previous Editions

Can’t find what you are looking for?

Please contact us at: