REGISTER

FR
Search
×
FR

Placeholder headline

This is just a placeholder headline

API RP 1173: Pipeline Safety Management Systems

$

167

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 1173: Pipeline Safety Management Systems : Errata 1

$

0

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 11S2: Electric Submersible Pump Testing: Edition 3

$

158

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 14L: Lock Mandrels and Landing Nipples : Reaffirmed

$

273

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 20F: Corrosion Resistant Bolting for Use in the Petroleum and Natural Gas Industries : Reaffirmed

$

169

BUY NOW

Placeholder headline

This is just a placeholder headline

API TR 5NCL Nickel Content Limits for API 5CT Sour Service Products

$

149

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 19ICD: Inflow Control Devices : Reaffirmed

$

189

BUY NOW

ISO 16017:2003

ISO 16017:2003 Indoor, ambient and workplace air – Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography – Part 2: Diffusive sampling

CDN $312.00

SKU: 4dc1867c5513 Category:

Description

ISO 16017-2:2003 gives general guidance for the sampling and analysis of volatile organic compounds (VOCs) in air. It is applicable to indoor, ambient and workplace air.

ISO 16017-2:2003 is applicable to a wide range of VOCs, including hydrocarbons, halogenated hydrocarbons, ester, glycol ethers, ketones and alcohols. A number of sorbents are recommended for the sampling of these VOCs, each sorbent having a different range of applicability. Very polar compounds generally require derivatisation; very low boiling compounds are only partially retained by the sorbents and can only be estimated qualitatively. Semi-volatile compounds are fully retained by the sorbents, but may only be partially recovered.

ISO 16017-2:2003 is applicable to the measurement of airborne vapours of VOCs in a concentration range of approximately 0,002 mg/m3 to 100 mg/m3 individual organic for an exposure time of 8 h, or 0,3 g/m3 to 300 g/m3 individual organic for an exposure time of four weeks.

The upper limit of the useful range is set by the sorptive capacity of the sorbent used and by the linear dynamic range of the gas chromatograph column and detector or by the sample splitting capability of the analytical instrumentation used. The lower limit of the useful range depends on the noise level of the detector and on blank levels of analyte and/or interfering artefacts on the sorbent tubes. Artefacts are typically sub-nanogram for well-conditioned Tenax GR and carbonaceous sorbents, carbonized molecular sieves and pure charcoals; at low nanogram levels for Tenax TA and at 5 ng to 50 ng levels for other porous polymers.

Edition

1

Published Date

2003-05-16

Status

PUBLISHED

Pages

35

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

ISO 16017-2:2003 gives general guidance for the sampling and analysis of volatile organic compounds (VOCs) in air. It is applicable to indoor, ambient and workplace air.

ISO 16017-2:2003 is applicable to a wide range of VOCs, including hydrocarbons, halogenated hydrocarbons, ester, glycol ethers, ketones and alcohols. A number of sorbents are recommended for the sampling of these VOCs, each sorbent having a different range of applicability. Very polar compounds generally require derivatisation; very low boiling compounds are only partially retained by the sorbents and can only be estimated qualitatively. Semi-volatile compounds are fully retained by the sorbents, but may only be partially recovered.

ISO 16017-2:2003 is applicable to the measurement of airborne vapours of VOCs in a concentration range of approximately 0,002 mg/m3 to 100 mg/m3 individual organic for an exposure time of 8 h, or 0,3 g/m3 to 300 g/m3 individual organic for an exposure time of four weeks.

The upper limit of the useful range is set by the sorptive capacity of the sorbent used and by the linear dynamic range of the gas chromatograph column and detector or by the sample splitting capability of the analytical instrumentation used. The lower limit of the useful range depends on the noise level of the detector and on blank levels of analyte and/or interfering artefacts on the sorbent tubes. Artefacts are typically sub-nanogram for well-conditioned Tenax GR and carbonaceous sorbents, carbonized molecular sieves and pure charcoals; at low nanogram levels for Tenax TA and at 5 ng to 50 ng levels for other porous polymers.

Previous Editions

Can’t find what you are looking for?

Please contact us at: