Search
×
FR

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-6 Chapter 6 – Density

$

204

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 560: Fired Heaters for General Refinery Services

$

721

BUY NOW

Placeholder headline

This is just a placeholder headline

API STD 64: Diverter Equipment Systems

$

324

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 17.10.1: Refrigerated Light Hydrocarbon Fluids – Measurement of Cargoes on Board LNG Carries

$

417

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-1: Testing Water-based Drilling Fluids

$

418

BUY NOW

Placeholder headline

This is just a placeholder headline

API Technical Report TDB-12 Chapter 12 – Thermal Conductivity

$

214

BUY NOW

Placeholder headline

This is just a placeholder headline

API 16FI Frac Iron Guidelines and Requirements

$

129

BUY NOW

ISO 16531:2020

ISO 16531:2020 Surface chemical analysis – Depth profiling – Methods for ion beam alignment and the associated measurement of current or current density for depth profiling in AES and XPS

CDN $233.00

Description

This document specifies methods for the alignment of the ion beam to ensure good depth resolution in sputter depth profiling and optimal cleaning of surfaces when using inert gas ions in Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). These methods are of two types: one involves a Faraday cup to measure the ion current; the other involves imaging methods. The Faraday cup method also specifies the measurements of current density and current distributions in ion beams. The methods are applicable for ion guns with beams with a spot size less than or equal to 1 mm in diameter. The methods do not include depth resolution optimization.

Edition

2

Published Date

2020-10-05

Status

PUBLISHED

Pages

19

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

This document specifies methods for the alignment of the ion beam to ensure good depth resolution in sputter depth profiling and optimal cleaning of surfaces when using inert gas ions in Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). These methods are of two types: one involves a Faraday cup to measure the ion current; the other involves imaging methods. The Faraday cup method also specifies the measurements of current density and current distributions in ion beams. The methods are applicable for ion guns with beams with a spot size less than or equal to 1 mm in diameter. The methods do not include depth resolution optimization.

Previous Editions

Can’t find what you are looking for?

Please contact us at: